Abstract
The Ra EDM experiment uses a pair of high voltage electrodes to search for the atomic electric dipole moment of 225Ra. We use identical, plane–parallel electrodes with a primary high gradient surface of 200 mm2 to generate reversible DC electric fields. Our statistical sensitivity is linearly proportional to the electric field strength in the electrode gap. We adapted surface decontamination and processing techniques from accelerator physics literature to chemical polish and clean a suite of newly fabricated large-grain niobium and grade-2 titanium electrodes. Three pairs of niobium electrodes and one pair of titanium electrodes were discharge-conditioned with a custom high voltage test station at electric field strengths as high as +52.5 kV/mm and −51.5 kV/mm over electrode gap sizes ranging from 0.4 mm to 2.5 mm. One pair of large-grain niobium electrodes was discharge-conditioned and validated to operate at ±20kV/mm with steady-state leakage current ≤25 pA (1σ) and a polarity-averaged 98±19 discharges per hour. These electrodes were installed in the Ra EDM experimental apparatus, replacing a copper electrode pair, and were revalidated to ±20kV/mm. The niobium electrodes perform at an electric field strength 3.1 times larger than the legacy copper electrodes and are ultimately limited by the maximum output of our 30 kV bipolar power supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.