Abstract

Amphiphilic block copolymer micelles can mimic the ability of natural lung surfactant to reduce the air-water interfacial tension close to zero and prevent the Laplace pressure-induced alveolar collapse. In this work, we investigated the air-water interfacial behaviors of polymer micelles derived from eight different poly(ethylene glycol) (PEG)-based block copolymers having different hydrophobic block chemistries to elucidate the effect of the core block chemistry on the surface mechanics of the block copolymer micelles. Aqueous micelles of about 30 nm in hydrodynamic diameter were prepared from the PEG-based block copolymers via equilibration-nanoprecipitation (ENP) and spread on the water surface using water as the spreading medium. Surface pressure-area isotherm and quantitative Brewster angle microscopy (QBAM) measurements were performed to investigate how the micelle/monolayer structures change during lateral compression of the monolayer; widely varying structural behaviors were observed, including the wrinkling/collapse of micelle monolayers and deformation and/or the desorption of individual micelles. By bivariate correlation regression analysis of surface pressure-area isotherm data, it was found that the rigidity and hydrophobicity of the hydrophobic core domain, which are quantified by glass-transition temperature (Tg) and water contact angle (θ) measurements, respectively, are coupled factors that need to be taken into account concurrently in order to control the surface mechanical properties of polymer micelle monolayers; micelles having rigid and strongly hydrophobic cores exhibited high surface pressure and a high compressibility modulus under high compression. High surface pressure and a high compressibility modulus were also found to be correlated with the formation of wrinkles in the micelle monolayer (visualized by Brewster angle microscopy (BAM)). From this study, we conclude that polymer micelles based on hydrophobic block materials having higher Tg and θ are more suitable for surfactant replacement therapy applications that require the therapeutic surfactant to produce a high surface pressure and modulus at the alveolar air-water interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call