Abstract

The nature of liquid-to-glass transition is a major puzzle in science. A similar challenge exists in glass-to-liquid transition, i.e., glass melting, especially for the poorly investigated surface effects. Here, we assemble colloidal glasses by vapor deposition and melt them by tuning particle attractions. The structural and dynamic parameters saturate at different depths, which define a surface liquid layer and an intermediate glassy layer. The power-law growth of both layers and melting front behaviors at different heating rates are similar to crystal premelting and melting, suggesting that premelting and melting can be generalized to amorphous solids. The measured single-particle kinetics reveal various features and confirm theoretical predictions for glass surface layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.