Abstract
Aqueous Zn batteries with ideal energy density and absolute safety are deemed the most promising candidates for next-generation energy storage systems. Nevertheless, stubborn dendrite formation and notorious parasitic reactions on the Zn metal anode have significantly compromised the Coulombic efficiency (CE) and cycling stability, severely impeding the Zn metal batteries from being deployed in the proposed applications. Herein, instead of random growth of Zn dendrites, a guided preferential growth of planar Zn layers is accomplished via atomic-scale matching of the surface lattice between the hexagonal close-packed (hcp) Zn(002) and face-centered cubic (fcc) Cu(100) crystal planes, as well as underpotential deposition (UPD)-enabled zincophilicity. The underlying mechanism of uniform Zn plating/stripping on the Cu(100) surface is demonstrated by ab initio molecular dynamics simulations and density functional theory calculations. The results show that each Zn atom layer is driven to grow along the exposed closest packed plane (002) in hcp Zn metal with a low lattice mismatch with Cu(100), leading to compact and planar Zn deposition. In situ optical visualization inspection is adopted to monitor the dynamic morphology evolution of such planar Zn layers. With this surface texture, the Zn anode exhibits exceptional reversibility with an ultrahigh Coulombic efficiency (CE) of 99.9%. The MnO2//Zn@Cu(100) full battery delivers long cycling stability over 548 cycles and outstanding specific energy and power density (112.5 Wh kg-1 even at 9897.1 W kg-1). This work is expected to address the issues associated with Zn metal anodes and promote the development of high-energy rechargeable Zn metal batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.