Abstract

The surface potentials of few-layer graphene (FLG) films in high vacuum and ambient conditions have been investigated by employing electrostatic force microscopy. It is found that the surface potential of FLG films in ambient air has a constant large depression compared to that measured in a high vacuum. Our experimental results indicate that the shift is most likely caused by the presence of ambient adsorbates on the outmost graphene surfaces. The surface potentials increase with the number of graphene layers and approach the bulk value for five or more graphene layers in high vacuum as well as in ambient air. Since the contribution of the surface adsorbates is a constant value, we further show that the thickness dependence of the surface potential can be sufficiently explained by the nonlinear Thomas–Fermi Theory in both conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.