Abstract

AbstractCarbon nanomaterials especially ultrananocrystalline diamond and nanocrystalline diamond films have attracted more and more interest due to their unique electrical, optical and mechanical properties, which make them widely used for different applications (e.g. MEMS devices, lateral field emission diodes, biosensors and thermoelectrics). Nanocrystalline diamond can also offer novel advantages for drug delivery development. Recent studies have begun to use nanocrystalline diamond for in-vivo molecular imaging and bio-labeling. To enable grafting of complex bio-molecules (e.g. DNA) the surface of ND requires specific fictionalization (e.g. H, OH, COOH & NH2). Due to the surface dipoles of functionalised nanodiamond band bending at the surface can be easily induced and from the measured band bending we can deduce the type of the fictionalization on the surface. The surface potential of H-terminated and OH terminated nanodiamond layers was investigated by Kelvin probe microscope. From the change of the surface potential value (as the departure of the material surface from the state of electrical neutrality is reflected in the energy band bending) the work function of the H-terminated nanodiamond layer was established to be lower than OH-terminated nanodiamond layer. The surface potential difference can be explained by the surface dipole induced by the electro-negativity difference between the termination atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.