Abstract

We theoretically study various aspects of the electron-surface optical phonon interaction effects in graphene on a substrate made of polar materials. We calculate the electron self energy in the presence of the surface phonon-mediated electron-electron interaction focusing on how the linear chiral graphene dispersion is renormalized by the surface phonons. The electron self energy as well as the quasiparticle spectral function in graphene are calculated, taking into account electron-polar optical phonon interaction by using a many-body perturbative formalism. The scattering rate of free electrons due to polar interaction with surface optical phonons in a dielectric substrate is calculated as a function of the electron energy, temperatures, and carrier density. Effects of screening on the self energy and scattering rate are discussed. Our theory provides a comprehensive quantitative (and qualitative) picture for surface phonon interaction induced many-body effects and hot-electron relaxation in Dirac materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.