Abstract
Nowadays, researchers find that the surface plasmons can mediate some chemical reactions through the generation of the confined plasmonic field, excited electrons, and local heating effect. In this article we suggest a new surface plasmonic photocatalysis mechanism based on the molecular optomechanics which is not considered before. A reaction kinetic model was established to achieve a quantitative study of catalytic efficiency. The catalytic mechanism is not limited to a specific chemical reaction, all molecules with Raman activity can be accelerated dramatically in reaction. For molecules with different mechanical properties, the corresponding optomechanical catalytic pathway needs to be selected. We hope that this work will provide guidance for achieving strong or even ultrastrong catalyses under specific optical conditions. We further demonstrate that the optomechanical effects can also be used for the deceleration, which provides the possibility to design a highly tunable chemical reaction system. We believe that the quantum photochemistry will be further developed and widely used in future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.