Abstract

Large amplitude fused silica gratings are prepared by combining the UV laser induced backside wet etching technique (LIBWE) and the two-beam interference method. The periodic patterning of fused silica surfaces is realized by s-polarized fourth harmonic beams of a Nd:YAG laser, applying saturated solution of naphthalene in methyl-methacrylate as liquid absorber. Atomic force microscopy is utilized to analyze how the modulation amplitude of the grating can be controlled by the fluence and number of laser pulses. Three types of plasmonic structures are prepared by a bottom-up method, post-evaporating the fused silica gratings by gold–silver bimetal layers, spin-coating the metal structures by thin polycarbonate films, and irradiating the multilayers by UV laser. The effect of the bimetal and polymer-coated bimetal gratings on the surface plasmon resonance is investigated in a modified Kretschmann arrangement allowing polar and azimuthal angle scans. It is demonstrated experimentally that scattering on rotated gratings results in additional minima on the resonance curves of plasmons excited by second harmonic beam of a continuous Nd:YAG laser. The azimuthal angle dependence proves that these additional minima originate from back-scattering. The analogous reflectivity minima were obtained by scattering matrix method calculations realized taking modulation depths measured on bimetal gratings into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.