Abstract

Nanostructure porous films with arrays of gold nanoparticles (Au NPs) have been produced by pulsed laser deposition. Dispersion properties of surface plasmons have been studied by the modulation-polarization spectroscopy technique. The dispersion relations for radiative modes and two types of non-radiative modes of localized and propagating surface plasmons were obtained. The branches of propagating modes were characterized by negative group velocity caused by spatial dispersion of dielectric function. The propagating modes are caused by dipole-dipole interactions between adjacent Au NPs. The frequencies and relaxation parameters of surface plasmon resonances and the plasma frequencies for Αu NPs were obtained. The relation between the surface plasmon’s properties and formation conditions of films with arrays of Αu NPs is discussed.

Highlights

  • The interaction between electromagnetic radiation and electrons in metal nanostructures is accompanied by surface plasmon resonance (SPR) manifesting itself

  • The dispersion properties of surface plasmons for por-Au films have been studied by the modulation-polarization spectroscopy (MPS) technique

  • Transmission spectra of the films were typical for localized surface plasmon resonances

Read more

Summary

Introduction

The interaction between electromagnetic radiation and electrons in metal nanostructures is accompanied by surface plasmon resonance (SPR) manifesting itself. The dependencies of ω(k) split into several branches for nanocomposites and nanostructures with arrays of gold nanoparticles (Au NPs) due to dipole-dipole interactions between nanoparticles. Both the resonances and the dispersion characteristics of surface plasmons are characterized by considerable variety [6,7,8,9,10,11,12,13,14,15,16,17,18,19]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.