Abstract

Periodically ordered δ-MnO2 arrays of different periods have been fabricated by using polystyrene (PS) nanosphere lithography (NSL) combined with following hydrothermal growth. By choosing different precursors, δ-MnO2 arrays with different alkali metals doping were obtained. It was observed that the K-doped δ-MnO2 array of 500 nm period exhibited superior photocatalytic degradation performance of methylene blue (MB) under visible light irradiation relative to those of Na- or Mg-doped δ-MnO2 arrays of 500 nm period, as well as K-doped δ-MnO2 array of 800 nm period. The best performance of K-doped δ-MnO2 array of 500 nm period can be firstly attributed to enhanced surface plasmon resonance (SPR) effect caused by alkali metal doping, where K-doped MnO2 could provide more free electrons than those of Na- or Mg- doped MnO2. Furthermore, for the nanomaterials with SPR effect the surface plasmon polaritons (SPP) can change the propagation path of incident light to vertical direction after scattering on them. Since the MnO2 array of 500 nm period possessed the distance between neighbor unites smaller than the wavelength of irradiation light, and thus the scattered light interfered with each other after the incident light was scattered by the MnO2 unites. Then the electric field (E-field) intensities generated by SPR effect near each MnO2 unit were elevated due to the interference effect. Therefore, our finding may provide a peculiar way to improve SPR-mediated photocatalytic performance of non-metallic materials by combination of doping and arrays fabrication of particular periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.