Abstract

We present a surface plasmon resonance sensor based on photonic crystal fiber filled with gold–silica–gold (GSG) multilayer nanoshells for measurement of the refractive index of liquid analyte. The GSG multilayer nanoshells, composed of a silica-coated gold nanosphere surrounded by a gold shell layer, are designed to be the functional material of the sensor because of their attractive optical properties. Two resonant peaks are obtained due to the hybridization of nanosphere plasmon modes and nanoshell plasmon modes. It is demonstrated that the resonant wavelength of the two peaks can be precisely tuned in 560–716 nm and 849–2485 nm, respectively, by varying the structural parameters of the GSG multilayer nanoshells in a compact, sub-200 nm size range. The excellent spectral tunability makes the sensor attractive in a wide range of applications, especially in biosensing in near-infrared region. Furthermore, the influences of the parameters on the performance of the sensor are systematically simulated and discussed. It is observed that the spectral sensitivities of 1894.3 nm/RIU and 3011.4 nm/RIU can be achieved respectively by the two resonant peaks in the sensing range of 1.33–1.38. The existence of two loss peaks also provides the possibility to realize self-reference in the sensing process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call