Abstract
Membrane proteins are the main targets of therapeutic drugs and most of them are glycosylated. Glycans play pivotal roles in several biological processes, and glycosylation changes are a well-established hallmark of several types of cancer, including pancreatic cancer, that contribute to tumor growth. Mucin-4 (MUC-4) is a membrane glycoprotein which is associated with pancreatic cancer and metastasis, and it has been targeted as a promising vaccine candidate. In this study, Surface Plasmon Resonance Microscopy (SPRM) was implemented to study complex influences of the native N-glycan cellular environment on binding interactions to the MUC-4 receptor as this is currently the only commercially available label-free technique with high enough sensitivity and resolution to measure binding kinetics and heterogeneity on single cells. Such unique capability enables for a more accurate understanding of the "true" binding interactions on human cancer cells without disrupting the native environment of the target MUC-4 receptor. Removal of N-linked glycans in pancreatic cancer cells using PNGase F exposed heterogeneity in Concanavalin (Con A) binding by revealing three new binding populations with higher affinities than the glycosylated control cells. Anti-MUC-4 binding interactions of enzymatically N-linked deglycosylated pancreatic cancer cells produced a 25x faster association and 37x higher affinity relative to the glycosylated control cells. Lastly, four interaction modes were observed for Helix Pomatia Agglutinin (HPA) binding to the glycosylated control cells, but shifted and increased in activity upon removal of N-linked glycans. These results identified predominant interaction modes of glycan and MUC-4 in pancreatic cancer cells, the kinetics of their binding interactions were quantified, and the influence of N-linked glycans in MUC-4 binding interactions was revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.