Abstract

Surface plasmon resonance microscopy (SPRM) has been widely employed in biological fields because of its high spatial resolution and label-free detection modality. In this study, SPRM based on total internal reflection (TIR) is studied via a home-built SPRM system, and the principle of imaging of a single nanoparticle is analyzed as well. By designing a ring filter and combining it with the deconvolution algorithm in Fourier space, the parabolic tail of the nanoparticle image is removed, in which a spatial resolution of 248 nm is obtained. In addition, we also measured the specific binding between the human IgG antigen and goat anti-human IgG antibody using the TIR-based SPRM. The experimental results have proved that the system can image sparse nanoparticles and monitor biomolecular interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call