Abstract

Surface plasmon resonance imaging (SPRi) is at the forefront of optical sensing, allowing real-time and label free simultaneous multi-analyte measurements. It represents an interesting technology for studying a broad variety of affinity interactions with impact in chemistry, both in fundamental and applied research. Signal sampling and management is a key step in SPRi measurements to achieve successful performances. This work aims to develop a strategy for selecting the sensing areas, called Regions of Interest (ROIs), to be sampled for recording SPRi signals that could results in improved sensor performances. The approach has been evaluated using antigen-antibody interaction: anti-human IgGs are immobilized on the chip surface in an array format, while the specific ligand (hIgG antigen) is in solution. This approach has general applicability and demonstrates that rational selection of sensitive areas and standard management of SPRi data has dramatic impact on sensor behaviour. The criteria of the method are: (a) creation of high density maps of ROIs, (b) evaluation of the SPRi binding signals on all the ROIs during a pre-analysis step, (c) 3D elaboration of the results, and (d) ranking of the ROIs for their final selection in further biosensor analysis. Using standard solution of antigen, three different ROIs selection approaches have been compared for their analytical performances. The proposed innovative method results to be the best one for SPRi-based sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.