Abstract
The E7 protein produced by high-risk human papillomavirus (HPV) induces a degradation of the retinoblastoma tumor suppressor RB through direct interaction, which suggests that an inhibitor for the interaction can be a potential anticancer drug. A surface plasmon resonance (SPR) imaging-based protein array chip was developed for the high-throughput screening of inhibitor molecules targeting RB-E7 interaction. The glutathione S-transferase-fused E7 protein (GST-E7) was first layered onto a glutathionylated gold chip surface that had been designed to specifically bind to GST-fused proteins. Subsequently, a microarrayer was used to spot the hexa-histidine-tagged RB proteins (His(6)-RB) onto the GST-E7-layered gold chip surface, and the resulting SPR image was analyzed. Upon increased His(6)-RB concentration in the spotting solution, the SPR signal intensity increased proportionally, indicating that His(6)-RB bound to GST-E7 in a concentration-dependent manner. The His(6)-RB/GST-E7 interaction was challenged by spotting the His(6)-RB solution in the presence of a RB binding peptide (PepC) derived from a motif on E7. The SPR imaging data showed that PepC inhibited the His(6)-RB/GST-E7 interaction in a concentration-dependent manner. Our results show that the SPR imaging-based protein array chip can be applied to screen small molecule inhibitors that target protein-protein interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.