Abstract

A new method to fabricate supported bilayer membrane (SBM) arrays for surface plasmon resonance (SPR) imaging analysis is demonstrated in this work. Thin silicate films are produced on gold SPR substrates using layer-by-layer assembly, followed by calcination. Etching into the glassified substrates using photolithographic techniques generates nanowells of desirable size and depth. Atomic force microscopy and SPR imaging analysis show that the features are well-defined, and the etching process appears to have a surface smoothing effect. After the wells are oxidized with strong acid, vesicles spontaneously fuse onto them to form supported membranes with a high degree of lateral mobility. Fluorescence recovery after photobleaching measurements yielded a diffusion coefficient of 1.1 mum2/s. To demonstrate the feasibility for high-throughput receptor-ligand interaction analysis, binding of cholera toxin (CT) to SBM arrays containing 5 mol % ganglioside GM1 receptor was carried out with SPR imaging. The results showed excellent well-to-well reproducibility (8% RSD at 60 nM CT) and marked detection sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.