Abstract

We report the development of a surface plasmon resonance sensor based on the silver ion (Ag(+))-induced conformational change of a cytosine-rich, single-stranded DNA for the detection of Ag(+) and cysteine (Cys) in aqueous solutions. In the free state, single-stranded oligonucleotides fold into double-helical structures through the addition of Ag(+) to cytosine–cytosine (C–C) mismatches. However, in the presence of Cys, which competitively binds to Ag(+), the formation of the C–Ag(+)–C assembly is inhibited, resulting in free-state, single-stranded oligonucleotides. To enhance sensitivity, the DNA intercalator, daunorubicin, was employed to achieve signal enhancement. The detection limit for Ag(+) was 10 nM with a measurement range of 50–2,000 nM, and the detection limit for Cys was 50 nM with a measurement range of 50–2,000 nM. This simple assay was also used to individually determine the spiked Ag(+) concentration in water samples and Cys concentrations in biological fluid samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call