Abstract
A semiconductor-metal-based photoelectrochemical (PEC) method is developed for bisphenol A (BPA) detection. The composite electrode is prepared by spin-coating of tin oxide (SnO2) nanoparticles on the surface of indium-tin oxide (ITO), followed by a controllable sputtering of gold nanoparticle (Au NPs). The introduction of Au NPs greatly improves the PEC response of the electrode, especially in the presence of tris (2,2′-bipyridine) ruthenium (II) hexafluorophosphate, Ru(bpy)3(PF6)2. Since the oxidation potential of BPA is lower than that of photo-generated Ru3+, BPA acts as an electron donor to reduce Ru3+ back to Ru2+ for the next round, which in turn establishes the relationship between the photocurrent and BPA concentration. Owing to the Plasmon effect of Au NPs, the energy level matching between SnO2 and Ru(bpy)32+, and the appropriate redox potential of BPA, the method exhibits high sensitivity and selectivity for BPA detection with a board linear range from 10−9 to10−5 M and a low detection limit of 1 fM. Moreover, the PEC method was applied to determine BPA in the real sample, finding the content of BPA in the cap of the infant feeding bottle is higher than that in the body.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.