Abstract

Rapid and precise bioaerosol detection in different environments has become an important research and technological issue over last decades. Previously, we employed a real-time PCR protocol in conjunction with personal bioaerosol sampler for rapid detection of airborne viruses. The approach has been proved to be specific and sensitive. However, a period of time required for entire procedure was in manner of hours. Some new developments are required to decrease the detection time down to real-time protocols. Presently, a surface plasmon resonance (SPR)-based immunosensor that coupled with a specific antigen-antibody reaction could offer sensitive, specific, rapid and label-free detection. This study describes the possibility of combining the personal sampler with SPR technology for qualitative and extremely rapid detection of airborne micro-organisms. Common viral surrogate MS2 bacteriophage, frequently used in bioaerosol studies, was employed as a model organism. The results of the sensor functionalizing procedure with monoclonal anti-MS2 antibody and optimization of the chip performance are presented. The SPR-based detection of the airborne virus was found to be very fast; the viral presence was detected in less than 2min, and the entire procedure (sampling and analysis) was undertaken in 6min, which could be considered as real-time detection for this type of measurements. The combination of SPR with the personal sampler targeted towards bioaerosol detection was proven to be feasible. The SPR sensor was found to be highly stable and suitable for multiple utilizations without significant decrease in response. The suggested approach opens new possibilities for the development of portable and rapid (almost real time) bioaerosol monitors. This technology is the first in the world real-time bioaerosol monitor. This outcome would be of strong interest to individuals representing public health, biosecurity, defence forces, environmental sciences and many others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.