Abstract

The efficacy of enzyme replacement therapy (ERT) for lysosomal storage diseases (LSDs) possibly depends on the cellular uptake of recombinant lysosomal enzymes (LEs), and it is known that cation-independent mannose 6-phosphate receptor (CI-M6PR) on the cell membrane is predominantly involved in the endocytosis of many LEs. To examine the biomolecular interaction between therapeutic LEs and CI-M6PR, we biophysically analyzed the complex formation of four LEs available with domain 9 of human CI-M6PR, a binding site of the receptor, by means of surface plasmon resonance (SPR) biosensor assays. The results revealed that the affinity of the LEs for domain 9 of the receptor increased in the following order: laronidase, agalsidase beta, idursulfase, and alglucosidase alfa; and the high affinity of laronidase for domain 9 of CI-M6PR was due to fast complex formation rather than slow dissociation of the complex. The affinity of the enzymes for domain 9 of CI-M6PR almost coincided with their cellular uptake. The SPR biosensor assay is sensitive and provides important information for the development of effective therapeutic LEs for LSDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.