Abstract

Random silver nanohole films were created through colloidal lithography techniques and metal vapor deposition. The transparent electrodes were characterized by uv-visible spectroscopy and incorporated into an organic solar cell. The test cells were evaluated for solar power-conversion efficiency and incident photon-to-current conversion efficiency. The incident photon-to-current conversion efficiency spectra displayed evidence that a nanohole film with 92nm diameter holes induces surface-plasmon-enhanced photoconversion. The nanohole silver films demonstrate a promising route to removing the indium tin oxide transparent electrode that is ubiquitous in organic optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call