Abstract

It is demonstrated that photoluminescence of DCJTB can be enhanced by surface plasmons occurred in silver nanoparticle arrays on glass substrates fabricated by using nanosphere lithography (NSL) combined with reactive ion etching (RIE). By changing the size of the seed polystyrene nanosphere with fixed thickness of SiO(2) film as a buffer layer between silver nanoparticles and fluorescent dye, we systematically studied the interaction between surface plasmons in Ag nanostructures and fluorescent dye by measuring the photoluminescence and time-resolved photoluminescence (TRPL) of the samples. As compared with pure DCJTB, it is observed that PL enhancement as high as 9.4 times and life time shortening from 0.966 ns shortened to 0.63 ns can be achieved with polystyrene nanosphere 430 nm in diameter. The physical origin due to plasmonic excitation has been clarified from 3D finite element simulations, as well as the assistance of UV-visible reflectance spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.