Abstract

Surface pyroelectricity and piezoelectricity induced by water incorporation during growth in α-glycine were investigated. Using the periodic temperature change technique, we have determined the thickness (~280 µm) of the near surface layer (NSL) and its pyroelectric coefficient (160 pC/(K × cm2) at 23 °C) independently. The thickness of NSL remains nearly constant till 60 °C and the pyroelectric effect vanishes abruptly by 70 °C. The piezoelectric effect, 0.1 pm/V at 23 °C measured with an interferometer, followed the same temperature dependence as the pyroelectric effect. Abrupt disappearance of both effects at 70 °C is irreversible and suggests that water incorporation to α-glycine forms a well defined near surface phase, which is different form α-glycine because it is polar but it too close to α-glycine to be distinguished by X-ray diffraction (XRD). The secondary pyroelectric effect was found to be <14% of the total, which is unexpectedly small for a material with a large thermal expansion coefficient. This implies that water incorporation infers minimal distortions in the host lattice. This finding suggests a path for the control of the piezoelectric and pyroelectric effects of the crystals using stereospecific incorporation of the guest molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.