Abstract
We have monitored the temporal evolution of the band bending at controlled silicon surfaces after a fs laser pump excitation. Time-resolved surface photo-voltage (SPV) experiments were performed using time resolved photoemission spectroscopy with time resolution of about 30 ns. To disentangle the influence of doping and surface termination on SPV dynamics, we compare the results obtained on two surface terminations: the water saturated (H,OH)-Si(001) surface and the thermally oxidized Si(001) one. The SPV dynamics were explored as a function of laser fluence and as a function of time for the two surface terminations at given doping levels. The return to equilibrium involves a characteristic time in the 0.1 μs to 10 μs range, depending on the surface termination and bulk doping. Exploring several laser fluences, different SPV regimes were found for the two surface terminations at given doping levels. For low laser fluence the SPV dynamic follows the commonly accepted thermionic model. At higher fluence, the SPV signal reaches a saturation value, and if the fluence is further increased, the decay time of the SPV increases and can no longer be explained by a thermionic model alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.