Abstract

The suitable hydrogen-binding free energy (ΔGH*) of active sites for hydrogen evolution reaction (HER) is the key for enhancing the electrocatalytic performances of transition metal based electrocatalysts. Usually metal/nonmetal elemental doping and unique nanostructure can be used to adjust the MH bonding energy for accelerating both generation and departure of H2. Herein, a simple in-situ phosphorsulfurization method has been used to synthesized nickel cobalt phosphosulphide (NiCoP|S/CC) nanoneedles grown on the surface of carbon cloth (CC) at low temperature as electrocatalyst for hydrogen evolution reaction (HER) in both acid (0.5 M H2SO4) and alkaline (1.0 M KOH) electrolyte solution. Typically, NiCo2O4/CC with nanoneedles structure is used as precursor. And NaH2PO2 and H2S is used as phosphorus and sulfur source, respectively. Compared with single metal phosphophides, the enhanced electrocatalytic performance of NiCoP|S/CC for HER can be attributed to the formation of new specie phosphosulphide and synergistic effect between phosphosulphide and carbon support CC. This work provide a new method with adjusting ΔGH* of active sites for preparing the excellent electrocatalysts for water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.