Abstract

Step-terrace structures were observed at on-axis/4o off 4H-SiC {0001} surfaces after Si-vapor etching which we have been supposed as an original technique to planarize and etch the SiC surfaces by utilizing a TaC crucible in temperature ranged from 1600 to 2200 oC. The structures obtained after the Si-vapor etching obviously indicated temperature dependence. There were two types of step-terrace structures in terms of the step height and the shape of the step edges at on-axis surfaces. Step bunched surfaces consisting of full unit cell height (= 1.0 nm) steps with {1-10n} facets at the step edges were observed at 4H-SiC (0001) in lower temperatures below 2000 oC, while smooth isotropic surfaces with half unit cell height (= 0.5 nm) steps and without any stable facets at the step edges were observed at 4H-SiC (0001) in higher temperatures above 2000 oC and in all temperature conditions (1600 - 2200 oC) at 4H-SiC (000-1). Similar tendency was also confirmed at 4o off 4H-SiC {0001} surfaces. From the comparison with 6H-SiC, macro step bunching (~10 nm height) was revealed to be a unique phenomenon at 4H-SiC (0001) surface in the etching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.