Abstract

AbstractWe present the fabrication of micron-sized patterns of FePt thin films from Pt@Fe2O3 coreshell nanoparticles. In a typical procedure, Pt@Fe2O3 core-shell nanoparticles were spread and formed a Langmuir film using water as the subphase. This film was lifted onto polydimethylsiloxane (PDMS) stamps with micron-sized patterns of lines, dots and wells, and transferred onto silicon wafers using microcontact printing (ν-CP). The patterns of Pt@Fe2O3 core-shell nanoparticles were converted into face-centered tetragonal phase FePt alloy at enhanced temperatures in the presence of 5% hydrogen. Scanning electron microscopy (SEM), atomic force microscopy (AFM), powder X-ray diffraction (PXRD) and superconducting quantum interference device (SQUID) magnetometer were used to characterize the patterns and the properties of the final FePt alloy films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call