Abstract
Hierarchical surface structures on metallic glass (MG) are useful for enhancing the material’s functions. In this paper, surface patterning of Zr-based MG was realized by nanosecond pulsed laser irradiation in nitrogen gas. Experimental results showed that three kinds of surface structures, namely, micro grooves, cross-shaped protrusions, and nanoparticles, were generated on the MG surface under specific laser scanning speeds and various laser power intensities and pulse overlap rates. In particular, the formation of cross-shaped protrusions has never been reported in the literature before. The formation mechanism for each kind of surface structure was investigated. In a nitrogen gas environment, cracks are easily generated and the cracked regions have higher laser absorption and localized thermal resistivity than those of the bulk material. Accordingly, the cross-shaped protrusions were ascribed to the selective thermoplastic extrusion of MG material out of the cracks and the laser pulse tracks formed by the preceding laser scans. It was found that the hierarchical surface structures significantly improved the surface hydrophobicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.