Abstract

Perovskite solar cells (PeSCs) prepared with single crystals (SCs) ideally exhibit higher power conversion efficiencies (PCEs) because they possess a lower density of structural imperfection and superior charge transport. However, the density of the surface defects on the SCs is still very high, thereby inevitably affecting the device performance. Herein, perovskite single-crystal micro-plates were grown on a hole-transporting material, poly[bis(4-phenyl)(2,4,6-trimethylphenyl) amine], through a space-limited inverse temperature crystallization method. The surfaces of the as-prepared SCs were passivated using trioctylphosphine oxide (TOPO) during the device fabrication to alleviate the impact of surface defects. The PCE values are averagely improved from 11.90 ± 0.30% to 14.76 ± 0.65% after the surface passivation; the champion device even exhibits a PCE of 15.65%. The results from photoluminescence and hole-only devices reveal that TOPO treatments effectively reduce the number of surface defects on the single crystals, thereby improving the photovoltaic performance. The surface passivation also inhibits the hysteresis behavior due to the lower defect density. Finally, the TOPO treatment also improves the stability of the single-crystal PeSCs, presumably due to the hydrophobic long alkyl chains. Thus, this work provides an effective approach to achieving high efficiencies of single-crystal PeSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.