Abstract

NEAR-TOTAL depletion of the ozone in surface air is often observed in the Arctic spring, coincident with high atmospheric concentrations of inorganic bromine1–5. Barrie et al.1 suggested that the ozone depletion was due to a catalytic cycle involving the radicals Br and BrO (ref. 6); however, these species are rapidly converted to the nonradical species HBr, HOBr and BrNO3, quenching ozone loss. McConnell et al.7 proposed that cycling of inorganic bromine between aerosols and the gas phase could maintain sufficiently high levels of Br and BrO to destroy ozone, but they did not specify a mechanism for aerosol-phase production of active bromine species. Here we propose such a mechanism, based on known aqueous-phase chemistry, which rapidly converts HBr, HOBr and BrNO3 back to Br and BrO radicals. This mechanism should be particularly efficient in the presence of the high concentrations of sulphuric acid aerosols observed during ozone depletion events3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.