Abstract

The activation of molecular oxygen is a fundamental step in almost all catalytic oxidation reactions. We have studied this topic and the role of surface vacancies for Co3O4(100) films with a synergistic combination of experimental and theoretical methods. We show that the as‐prepared surface is B‐layer terminated and that mild reduction produces oxygen single and double vacancies in this layer. Oxygen adsorption experiments clearly reveal different superoxide species below room temperature. The superoxide desorbs below ca. 120 K from a vacancy‐free surface and is not active for CO oxidation while superoxide on a surface with oxygen vacancies is stable up to ca. 270 K and can oxidize CO already at the low temperature of 120 K. The vacancies are not refilled by oxygen from the superoxide, which makes them suitable for long‐term operation. Our joint experimental/theoretical effort highlights the relevance of surface vacancies in catalytic oxidation reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.