Abstract

Surface terminations of diamond play an important role in determining the electric properties of diamond-based electronic devices. We report an ultraviolet/ozone (UV/ozone) treatment process on hydrogen-terminated single crystal diamond (H-diamond) to modulate the carrier behavior related to varying oxygen adsorption on surfaces. By UV/ozone treatments, the induced oxygen radicals are chemically adsorbed on the H-terminated diamond and replace the original adsorbed H, which is analyzed by x-ray photoelectron spectroscopy. The concentration of oxygen adsorbed on surface increases from ∼3% to ∼8% with increasing the ozone treatment time from 20 s to 600 s. It is further confirmed by examining the wettability properties of the varying diamond surfaces, where the hydrophobic for H-termination transfers to hydrophilic for partly O-termination. Hall effect measurements show that the resistance (hole mobility) of the UV/ozone-treated H-diamond continuously increases (decrease) by two orders of magnitude with increasing UV/ozone treatment time from 20 s to 600 s. The results reveal that UV/ozone treatment becomes an efficient method to modulate the surface electrical properties of H-diamonds for further investigating the oxygenation effect on two-dimensional hole gas based diamond devices applied in some extreme environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.