Abstract
While the shape-dependent quantum confinement (QC) effect in anisotropic semiconductor nanocrystals has been extensively studied, the QC in facet-specified polyhedral quantum dots (QDs) remains underexplored. Recently, tetrahedral nanocrystals have gained prominence in III-V nanocrystal synthesis. In our study, we successfully synthesized well-faceted tetrahedral InAs QDs with a first excitonic absorption extending up to 1700 nm. We observed an unconventional sizing curve, indicating weaker confinement than for equivalently volumed spherical QDs. The (111) surface states of InAs QDs persist at the conduction band minimum state even after ligand passivation with a significantly reduced band gap, which places tetrahedral QDs at lower energies in the sizing curve. Consequently, films composed of tetrahedral QDs demonstrate an extended photoresponse into the short-wave infrared region, compared to isovolume spherical QD films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.