Abstract

Binocular disparity and motion parallax provide information about the spatial structure and layout of the world. Descriptive similarities between the two cues have often been noted which have been taken as evidence of a close relationship between them. Here, we report two experiments which investigate the effect of surface orientation and modulation frequency on (i) a threshold detection task and (ii) a supra-threshold depth-matching task using sinusoidally corrugated surfaces defined by binocular disparity or motion parallax. For low frequency corrugations, an orientation anisotropy was observed in both domains, with sensitivity decreasing as surface orientation was varied from horizontal to vertical. In the depth-matching task, for surfaces defined by binocular disparity the greatest depth was seen for oblique orientations. For surfaces defined by motion parallax, perceived depth was found to increase as surface orientation was varied from horizontal to vertical. In neither case was perceived depth for supra-threshold surfaces related to threshold performance in any simple manner. These results reveal clear differences between the perception of depth from binocular disparity or motion parallax, and between perception at threshold and supra-threshold levels of performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.