Abstract

AbstractPolylactide/hydroxyapatite (PLA/HA) composites are promising tissue engineering materials because of the PLA biodegradability and HA as a natural bone component. PLA/HA composites without HA modification lead to mechanical failure due to the interfacial immiscibility. In this study, an effective chemical surface methodology is used to modify HA to obtain PLA/HA composites with superior mechanical properties. The HA particles are modified with fatty acids (adipic, sebacic, lauric, and linoleic) and incorporated into a PLA matrix by polymer solution casting, using chloroform as the solvent. After the HA modification, the films exhibited an improvement in tensile strength, elongation at break, and elastic modulus. Yet, the best results observed are by sebacic and adipic acid modification. These increments are attributed to a higher affinity of the organo‐modified HA particles within the PLA matrix. Therefore, the development of materials for osteo‐regeneration engineering based on these systems is quite promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.