Abstract
Isothermal-isobaric and Gibbs ensemble Monte Carlo (GEMC) computer simulations of = 1500 and = 3000 hard cut spheres of aspect ratio / = 0.1, respectively, are carried out in order to investigate the effects of confinement on the isotropic (I)-nematic (N) phase transition. We first consider the free system, and confirm the stabilisation of isotropic (I), nematic (N) and columnar (Col) states. We examine in detail the I-N transition and find coexistence densities of =0.355 and =0.368. A slab geometry is then considered for two types of walls: a hard wall, which excludes the particles entirely, and an 'adsorbent' wall which excludes the centre of mass of the particles. The adsorbent wall is found to favour planar (edge-on) alignment, which results in the formation of a first layer of adsorbed molecules, which then acts as a rough hard wall for subsequent particles, and promotes disordered states. Using Gibbs ensemble simulations we determine the capillary phase diagram of the system, and the adsorption as a function of pore width. The capillary phase diagram obtained from Gibbs ensemble simulations corresponds to one with a first-order capillary isotropisation transition, with an associated capillary critical point for a wall separation of ∼3. The hard walls are seen to promote homeotropic (face-on) alignment of the cut spheres, and promote the stabilisation of the nematic phase. In this case the capillary phase diagram obtained from the GEMC simulations exhibits a first-order capillary nematisation transition, and a capillary critical point for a wall separation of ∼4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.