Abstract

Let ${{ \mathcal{P}}}_{{\lambda}}:={{ \mathcal{P}}}_{{\lambda}{\kappa}}$ denote a Poisson point process of intensity ${\lambda}{\kappa}$ on $[0,1]^{d}$, $d\geq2$, with ${\kappa}$ a bounded density on $[0,1]^{d}$ and ${\lambda}\in(0,\infty)$. Given a closed subset ${ \mathcal{M}}\subset[0,1]^{d}$ of Hausdorff dimension $(d-1)$, we consider general statistics $\sum_{x\in{{ \mathcal{P}}}_{{\lambda}}}\xi(x,{{ \mathcal{P}}}_{{\lambda}},{ \mathcal{M}})$, where the score function $\xi$ vanishes unless the input $x$ is close to ${ \mathcal{M}}$ and where $\xi$ satisfies a weak spatial dependency condition. We give a rate of normal convergence for the rescaled statistics $\sum_{x\in{{ \mathcal{P}}}_{{\lambda}}}\xi({\lambda}^{1/d}x,{\lambda}^{1/d}{{ \mathcal{P}}}_{{\lambda}},{\lambda}^{1/d}{ \mathcal{M}})$ as ${\lambda}\to\infty$. When ${ \mathcal{M}}$ is of class $C^{2}$, we obtain weak laws of large numbers and variance asymptotics for these statistics, showing that growth is surface order, that is, of order $\mathrm{Vol} ({\lambda}^{1/d}{ \mathcal{M}})$. We use the general results to deduce variance asymptotics and central limit theorems for statistics arising in stochastic geometry, including Poisson–Voronoi volume and surface area estimators, answering questions in Heveling and Reitzner [Ann. Appl. Probab. 19 (2009) 719–736] and Reitzner, Spodarev and Zaporozhets [Adv. in Appl. Probab. 44 (2012) 938–953]. The general results also yield the limit theory for the number of maximal points in a sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.