Abstract

The morphology of linear polybutadiene physisorbed on freshly cleaved mica from a dilute polymer solution is investigated through atomic force microscopy. A fine-structure study shows that the monolayer morphology in air (after rapid solvent evaporation) depends strongly on the molecular weight (Mw) of the linear polymer, the adsorbed amount, and the conformation adopted by the adsorbed polymer chains under good solvent conditions. The dependence of the observed polymer structure on Mw is most significant for samples with high surface density, where the intermolecular interactions among the adsorbed polymers are important. For high surface density, the adsorbed polymers tend to aggregate and minimize unfavorable contacts with air for all of the different Mw samples, leading to an isotropic structural pattern. These structural phenomena with increasing surface density are explained on the basis of the intermolecular interactions of the adsorbed polymers under good solvent conditions, and after the abrupt solvent evaporation corresponding to poor solvent conditions. The experimental observations are further discussed using the results obtained from molecular dynamics simulations of a simple coarse-grained model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.