Abstract

Pulsed organometallic beam epitaxy is a new technique for the deposition of complex metal oxide films. With this technique each metal precursor species is sequentially pulsed onto the substrate. The flux of the precursor is monitored and computer feedback control is used to adjust the size of each precursor pulse, allowing precise control of the metal stoichiometry. Smooth films of YBa 2Cu 3O 7−δ, as examined by SEM, can be made with this technique in a temperature range that includes 640–680 °C using the β-diketonate precursors, Y(dipivalolymethanate) 3, Ba(hexafluoroacetylacetonate) 2-tetraglyme, and Cu(acetylacetonate) 2. The morphology of the films is dependent on the ratio of the three precursors delivered to the substrate. The ratio of the three precursors must be held to better than +-10% in order to produce smooth films. The ratio between the three precursors needed to produce a smooth film changes with the deposition temperature. The relative amount of yttrium precursor delivered to the substrate must be decreased as the temperature is increased in order to maintain a smooth film. The metal composition of the smooth films is Y 1Ba 2Cu 3 (±4%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.