Abstract
Molecular beam epitaxy growth utilising an RF-plasma nitrogen source was used to study surface reconstruction and surface morphology of GaN on GaAs (001) at 580 °C. While both the nitrogen flow and plasma excitation power were constant, the grown layers were characterised as a function of Ga-flux. In the initial growth stage a (3×3) surface reconstruction was observed. This surface periodicity only lasted up to a maximum thickness of 2.5 ML, followed by a transition to the unreconstructed surface. Samples grown under N-rich, Ga-rich and stoichiometric conditions were characterised by high-resolution scanning electron microscopy and atomic force microscopy. We found that the smoothest surfaces were provided by the N/Ga-ratio giving the thickest layer at the (3×3)=>(1×1) transition. The defect formation at the GaN/GaAs interface also depended on the N/Ga-flux ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: MRS Internet Journal of Nitride Semiconductor Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.