Abstract

Step-controlled growth of 4H-SiC epitaxial layers leads to the formation of a step-bunched morphology along the surface with larger macrosteps, composed of smaller microsteps of several Si-C bilayer heights. As thermal oxidation is an orientation-dependent process, a multi-faceted surface is expected to exhibit a different oxidation behavior compared to a perfectly planar surface. In this work, step-bunched surfaces after oxidation are investigated by high-resolution atomic force microscopy (HR-AFM) and transmission electron microscopy (TEM) indicating a morphological change in the early stages of thermal oxidation. An orientation-dependent oxidation model is used to correctly describe variations of the oxide thicknesses at isolated macrosteps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call