Abstract

The needle-like surface morphology evolution in oxygen plasma in combination with a secondary gas (Cl2, CHF3 or CF4) by inductively coupled plasma reactive ion etching (ICP-RIE) on a free-standing polycrystalline diamond was investigated. The addition of CF4 can produce trans-polyacetylene (t-PA), which is similar to the result when the pure O2 etching takes place, and generate compact needle-tip particles. However, the t-PA disappears with the introduction of Cl or H ions. The optimised etching parameters for the needle-like structure formation are as following: Cl2/O2 ratio 20% and RF-power (RFP) 100 W, where more compact and even nano-needles are realised with an average etching rate of 2 μm/min. The Cl2/O2 plasma etching results indicate that the time-dependent etching mechanism of diamond nano-needles results from (1 1 1) crystal plane selective etching and preferential graphitisation at the twin-plane boundary and dislocation area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call