Abstract

Chemical–mechanical polishing (CMP) is widely adopted as a key bridge between fine rotation grinding and ion beam figuring in super-smooth monocrystalline silicon mirror manufacturing. However, controlling mid- to short-spatial-period errors during CMP is a challenge owing to the complex chemical–mechanical material removal process during surface morphology formation. In this study, the nature of chemical and mechanical material removal during CMP is theoretically studied based on a three-system elastic–plastic model and wet chemical etching behavior. The effect of the applied load, material properties, abrasive size distribution, and chemical reaction rate on the polishing surface morphology is evaluated. A microscale material removal model is established to numerically predict the silicon surface morphology and to explain the surface roughness evolution and the source of nanoscale intrinsic polishing scratches. The simulated surface morphology is consistent with the experimental results obtained by using the same polishing parameters tested by employing profilometry and atomic force microscopy. The PSD curve for both simulated surface and experimental results by profilometry and atomic force microscopy follows linear relation with double-logarithmic coordinates. This model can be used to adjust the polishing parameters for surface quality optimization, which facilitates CMP manufacturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.