Abstract

In this work, amorphous hydrogenated carbon (a-C:H), SiOx containing a-C:H (a-C:H/SiOx) and nitrogen-doped a-C:H/SiOx (a-C:H:N/SiOx) thin films were deposited on chromium thin film coated glass using a closed drift ion beam source. Acetylene gas, hexamethyldisiloxane and hydrogen or 20% nitrogen/hydrogen mixture were used as precursors. Resulting hydrogenated carbon thin film surface morphology as well as their cohesive and adhesive properties were studied using progressive loading scratch tests followed by optical microscopy analysis. Surface analysis was also performed using atomic force microscopy via topography, surface morphology parameter, height distribution histogram and bearing ratio curve based hybrid parameter measurements. The a-C:H/SiOx and a-C:H:N/SiOx thin films showed better mechanical strength as compared to the conventional a-C:H films. X-ray photoelectron spectroscopy was used to determine the chemical composition of these films. It showed increased amounts of silicon and absence of terminal oxygenated carbon bonds in a-C:H:N/SiOx thin film which was attributed to its improved mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call