Abstract

AbstractBy the use of atomic force microscopy (AFM), formation mechanism of nodular structure in cellulose acetate membranes was systematically investigated. Elementary factors affecting the nodule formation were delineated on the basis of both kinetic and thermodynamic considerations. It was shown that (1) the exact nature of nodular structure is thermodynamic equilibrium glassy state; nodular structure will vanish in the rubbery state; (2) the thermodynamic factor affecting nodule formation is the membrane formation temperature; with the membrane formation temperature decreasing, more chain segments are able to form nodular structures; (3) nodule formation is dependent on the segment rearrangement; variation of the solvent environment is the major kinetic factor affecting the segment rearrangement and nodule formation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1328–1335, 2003

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.