Abstract

An interdigital transducer device equipped with a metal catalyst sample that can be used to enhance catalytic activity by acoustic excitation is investigated. It was found that the propagation of 20 MHz surface acoustic waves of the Rayleigh type on Pt thin film single crystals causes drastic changes in surface morphology. The process of film breaking is observed and it is concluded that a phase shift in the acoustic wave induced by folds and cavities in the sample is responsible for the appearance of cracks. The influence of the change in morphology on catalytic activity and the acoustically induced rate enhancement effect is studied, and it is concluded that these changes are not a significant factor in the observed enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.