Abstract

A Mn-doped ZnS quantum dots (QDs) based nanosensor for selective phosphorescent determination of patulin (PAT) was synthesized with 6-hydroxynicotinic acid (6-HNA) as dummy template via a surface molecular imprinting sol–gel process. FTIR and XRD indicated the successful graft of molecularly imprinted polymer (MIP) onto crystal QDs. Binding tests revealed that the MIP-QDs presented higher selectivity, adsorption capacity and mass transfer rate than non-imprinted polymers, demonstrating a specific recognition for PAT among competitive mycotoxins and its analogues with the imprinting factor of 2.02. The MIP-QDs could recognize PAT in a linear range of 0.43–6.50μmolL−1 with a detection limit of 0.32μmolL−1 and a correlation coefficient (R2) of 0.9945. Recoveries of 102.9–127.2% with relative standard deviations <4.95% were achieved in apple juice samples which were in good agreement with high-performance liquid chromatography (HPLC) (P>0.05). The results indicated a simple phosphorescent nanosensor for PAT detection in complex matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call