Abstract

The electrochemical carbon dioxide reduction reaction (CO2 RR) provides a sustainable strategy to relieve global warming and achieve carbon neutrality. However, the practical application of CO2 RR is still limited by the poor selectivity and low current density. Here, the surface molecular functionalization of unusual phase metal nanomaterials for high-performance CO2 RR under industry-relevant current density is reported. It is observed that 5-mercapto-1-methyltetrazole (MMT)-modified 4H/face-centered cubic (fcc) gold (Au) nanorods demonstrate greatly enhanced CO2 RR performance than original oleylamine (OAm)-capped 4H/fcc Au nanorods in both an H-type cell and flow cell. Significantly, MMT-modified 4H/fcc Au nanorods deliver an excellent carbon monoxide selectivity of 95.6% under the industry-relevant current density of 200mAcm-2 . Density functional theory calculations reveal distinct electronic modulations by surface ligands, in which MMT improves while OAm suppresses the surface electroactivity of 4H/fcc Au nanorods. Furthermore, this method can be extended to various MMT derivatives and conventional fcc Au nanostructures in boosting CO2 RR performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.