Abstract

A new, simple and highly versatile method for the surface modification of luminescent cadmium selenide nanoparticles (CdSe NPs) based on 1,3-dipolar cycloaddition reactions is described. Uniform, trioctylphosphine oxide (TOPO)-covered CdSe NPs were prepared and subjected to two ligand-exchange reactions: first, ligand exchange was accomplished with pyridine, fully removing the TOPO ligand from the CdSe surface. In a second step, either 1-[(3-azidopropyl)octylphosphinoyl]octane or hex-5-ynoic acid 3-(dioctylphosphinoyl)propyl ester were added, attaching an azido or an acetylene moiety to the NP surface. Further thermal or Cu(I)-mediated 1,3-dipolar cycloaddition reactions on the residual azido/acetylene moieties with a variety of acetylenes/azides furnished the modified CdSe NPs with supramolecular receptors (i.e. barbituric acid, thymine, oligoethyleneglycol) on their surface. Photoluminescence measurements reveal a ∼50% residual quantum yield (relative to TOPO-covered CdSe NPs) after ligand modification, thus presenting an efficient pathway towards luminescent, surface modified CdSe NPs. The presence of the different functional groups was proven by 1H-NMR, 31P-NMR spectroscopy and by use of a nanoparticle-bound spiropyran dye and subsequent fluorescence quenching experiments. In order to further exploit the ligands on the CdSe NP surfaces, supramolecular recognition via binding to self-assembled monolayers (SAMs) presenting the matching receptor was investigated, leading to dense layers of CdSe NPs on planar surfaces as verified by AFM measurements. The concept offers a simple method for guiding the binding and recognition of luminescent CdSe NPs and related NPs onto surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call